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ABSTRACT. We analyze the interrelations between prospective and practicing teachers’
learning of the mathematics of change and the development of their emerging under-
standing of effective mathematics teaching. The participants in our study, who were all
interested in teaching secondary mathematics, were mathematics majors who had signifi-
cant formal knowledge of the fundamental concepts of calculus prior to taking our courses,
but who often experienced and expressed procedural orientations toward the teaching of
mathematics. To address this difficulty, we developed novel computer-based activities to
challenge the participants’ mathematical understandings and required them to use tech-
nology during short teaching episodes they conducted with younger students. To analyze
our participants’ understandings, we developed a framework that juxtaposes the roles of
the participants as students and teachers, and their understanding of mathematics and
of pedagogical strategies. Our analysis of the participants’ views from these different
perspectives enabled us to see simultaneously the intertwined development of subject
matter insights and specific views of teaching.

Students enrolled in mathematics education courses are simultaneously
learners and teachers in transition. As learners, they are constructing
new ways of thinking about seemingly familiar mathematics and about
new ways that others might learn. As teachers in transition, they are
anticipating how their experiences in learning mathematics will relate to
their future experiences as teachers in their own classrooms. There are
several difficulties facing mathematics educators teaching such courses
for preservice teachers. One obstacle relates to prospective teachers’ well-
documented resiliency toward changing their views of effective pedagogy
(cf., Cooney, Wilson, Albright & Chauvot, 1998; Hiebert, 1986; Lampert
& Ball, 1998; Pajares & Bengston, 1995; Siebert, Lobato & Brown, 1998;
Thompson, 1992). A second difficulty is that, as learners, prospective
teachers are often content with what may be superficial understandings
of deep mathematical concepts. Once they have formalized a procedure,
it is difficult to re-visit the underlying concept for deeper understanding
(Hiebert & Carpenter, 1992; Lee & Wheeler, 1989; Skemp, 1978; Wilson
& Goldenberg, 1998). As teacher educators, we would like pre-service
teachers to realize that fragile mathematical understandings are inade-
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quate when teaching mathematics in ways that support more meaningful
understanding.

Our approach to challenging and perhaps changing prospective
teachers’ understandings of mathematics and effective pedagogy was
to design novel computer-based activities that would elicit dissonance
between what was expected and what occurred on the computer screen, and
then to discuss how this dissonance could promote reflection and learning.
The goal of our study was to investigate two questions:

1) How do prospective teachers, acting in the role ofstudents, think about
the mathematics of change when using an exploratory microworld in
the context of their course work?

2) How do prospective teachers, acting in the role ofteachers, think about
the mathematics of change when using an exploratory microworld
during tutoring sessions with young children?

THEORETICAL FRAMEWORK

The theoretical framework that guides our work is based on a construc-
tivist perspective in which learning is viewed as a process of experi-
encing dissonance and working to resolve perturbations by building viable
explanations (von Glasersfeld, 1987, 1995). As Steffe and Thompson
(2000) recently noted, Piaget contended that there are four factors that
contribute to one’s cognitive development. These include social inter-
action, maturation, physical experience, and self-regulation. “Individuals
establish equilibrium among personal schemes of action and anticipation
as they interact in mutual adaptation – as constrained by local limitations
imposed by their abilities to accommodate those very schemes” (Steffe &
Thompson, 2000, p. 193). The critical element of this general model is that
students are seen as cognizing individuals who are continually interacting
with each other and with their environment (which includes the computer
and the accompanying activities) and adapting their own views through
processes of interactive accommodation. We take very seriously Steffe and
Thompson’s recommendation that “Researchers should not apply general
models like von Glasersfeld’s or Vygotsky’s directly to the practice of
mathematics education” (p. 204). In fact, we view the model as a general
way of looking at how the participants in our study accommodated their
current ways of knowing mathematics with the unanticipated outcomes
they experienced during some of their activities. To create the need for our
participants to adapt their mathematical understandings and their views
of effective pedagogy, we designed activities that were grounded in the
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well-established body of research regarding students’ conceptions of the
mathematics of change. The nexus of this research consists of studies
describing students’ understandings of motion and graphing (Bowers &
Nickerson, in press; Cooney & Wilson, 1993; Kaput & Roschelle, 1997;
Nemirovsky & Monk, 2000), of rate (Harel, Behr, Lesh & Post, 1994;
Lobato & Thanheiser, 1999; Thompson & Thompson, 1996; Thompson,
1994, 1996), and of calculus (Davis & Vinner, 1986; Kaput, 1994; Lauten,
Graham & Ferrini-Mundy, 1994; Schoenfeld, Dubinsky & Gleason, 1997;
Tall, 1992; Thompson, 1994; Williams, 1991).

One consistent finding in the research regarding the mathematics of
change is the difficulty students have reading and interpreting graphs of
motion. For example, several researchers have identified the tendency for
students to interpret the graph of position versus time as a picture of
the actual path of the motion (cf., Leinhardt, Zaslavsky & Stein, 1990).
This tendency towardsiconic translationof the graph as a picture of the
physical event suggests that graphs of motion and the change in motion
are difficult for students to construct and interpret. Likewise, students
encounter difficulties in interpreting the global features of a graph, such
as change over time (Monk, 1992). Thus, we anticipated thatgraph as
pathand point-wise versus over-time graphical interpretations might serve
as potential sources of perturbation in the computer-based activities.

Other studies have revealed that students have particular difficulty
understanding graphs of rates, since they do not have strong intuitions
about rate prior to instruction (cf., Harel, Behr, Lesh & Post, 1994). In
the case of the mathematics of change, one possible reason that rate of
change (speed or velocity) is not as intuitive as position is that speed is an
intensive quantity whereas position is an extensive (measurable) quantity
(Schwartz, 1988). In exploring the distinction between intensive and
extensive quantities, Lobato and Thanheiser (1999) found that students’
everyday experiences with an intensive quantity like speed did not help
them form meaningful ratios for measuring the speed of novel motions
such as a mouse running along the floor. In fact, in some cases students’
prior experiences may have promoted their tendencies to conflate the
various quantities that could be measured in the situation. These find-
ings guided our efforts to design tasks that would involve participants
in activities that demanded strong proportional reasoning about rates and
their relation to accumulated position in order to interpret the relationships
between the quantities in the computer-generated graphs.

Given that the mathematics of change is a central foundation for
calculus, we also drew on research on students’ difficulties in developing
conceptual understandings of limits and functions. Although all partici-
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pants had taken at least three undergraduate courses in calculus, we did
not assume that their understanding and experiences extended beyond
superficial interpretations of differentiation and integration (Selden,
Mason, & Selden, 1989; Tall, 1992; Thompson, 1994). Thompson (1994)
explained that the danger of such fragile knowledge is that students who
develop procedural understanding often think of algebraic expressions as
commands to do something, i.e., calculate, rather than as quantities that
are mathematical objects in and of themselves. For example, students may
view the expression 7x − x2 as a string of operations rather than as an
entity in itself, namely a function ofx. One implication of this view is that
students come to view the integral of an algebraic expression as simply
a formalized algorithm; they do not view the expression as a position
function that represents the accrual of distance resulting from traveling
at a given velocity over time. We hypothesized that if such procedural
understanding was a prominent aspect of our own students’ understanding,
then asking them to create position graphs over time based on velocity
graphs (rather than on their algebraic representations) would be a potential
source for perturbation. Our hypothesis was that, for them, position graphs
were the result of algebraic manipulations, not graphical interpretations.
Likewise, being able to interpret families of functions and the effects of
parameters, such as adding the constantC when computing an integral,
would be potentially challenging in that such interpretation depends on
an understanding of the integral as a family of position functions all
determined by the same velocity function.

In summary, the constructivist learning theory that guided our work was
based on efforts to initiate perturbations in our participants’ views of the
mathematics of change and elicit shifts in their views of effective ways of
teaching these concepts. The way in which we initiated dissonance was to
create novel, computer-based activities that might challenge our students’
expectations. In creating these activities we drew on three main areas of
research: (a) students’ propensity to view a graph as a picture of the path
traveled; (b) students’ difficulties in interpreting intensive quantities and
their graphs; and (c) the difficulties inherent in superficial understandings
of calculus and the mathematics of change.

METHODS

Participants and Setting

The participants for this study were pre- and in-service secondary mathe-
matics teachers enrolled in one of two technology-based mathematics
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courses taught by each of the authors. The courses were taught at two
different universities on opposite coasts of the United States. The goal
of both courses was to expand students’ ideas about the mathematics of
change in conceptual ways by engaging the participants in three shared
instructional sequences. The sites differed slightly in terms of course
emphasis and participants’ educational levels and experiences.

The course at Site A had 15 students, five of whom were in-service
teachers enrolled in a master’s degree program. The remaining ten students
were undergraduate mathematics majors, most of whom were seniors, who
had volunteered as teaching assistants in local schools, but had not yet been
certified to teach. The course at Site B had eleven students; ten were preser-
vice master’s or doctoral students, and one was an in-service master’s
student. All the participants at Site B had completed student teaching at the
secondary level, and most had taught introductory level courses as teaching
assistants at the university level. All students enrolled in the courses had
completed all or most of the courses required for an undergraduate mathe-
matics major. Each course met for 3 hours per week with some computer
lab work completed in class and the remainder completed by the students
as homework. All students enrolled in the two courses agreed to participate
in the study.

Technology Environment

The shared activity sequences enacted at each site involved the use of
motion detectors and the MathWorlds software environment, a simulation
world developed by a team of researchers at the University of Massachu-
setts at Dartmouth (Kaput & Roschelle, 1997).2 This environment is a
dynamic microworld for exploring one-dimensional motion in which any
combination of three graphs (position vs. time, velocity vs. time, and accel-
eration vs. time) can be linked to an animated simulation and to each other.
Unlike most function graphing software that includes multiple, linked
representations of the same data set, the central focus of the MathWorlds
software is the exploration of the same phenomena that can be represented
with different data sets (i.e., position, velocity, and acceleration). In other
words, unlike function graphing software that includes linked tables of
values, graphs, and algebraic equations to represent the same data set,
the MathWorlds software includes an animation of a character or a set
of characters moving in a horizontal direction that is directly linked to its
position, velocity and acceleration graphs, which also are bi-directionally
linked to each other. This bi-directional link enables learners to change any
parameter of a character’s motion by manipulating any of the graphical
representations.
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Instructional Sequences

The three core instructional sequences that were shared between the two
courses were designed to engage participants in experiential and graph-
ical ways of challenging their formal knowledge of the mathematics of
change and to support the development of pedagogical content knowledge
regarding how younger learners might engage with these ideas. The first
two sequences, which involved investigations of relative and parabolic
motions, were specifically designed to provide opportunities to explore the
richness of the Fundamental Theorem of Calculus by examining the rela-
tionship between a velocity graph and its linked position graph. The third
activity sequence involved having the participants design, implement, and
reflect on a MathWorlds-based lesson sequence to help younger students
interpret various concepts of the mathematics of change.

Sequence 1. The core idea of the first sequence was to create a situation
in which the relative, one-dimensional motion of two characters could be
investigated. In each task, one character travels at a constant rate while
another travels at a linearly increasing or decreasing rate. A series of ques-
tions focused on determining when and if the two characters will meet
(e.g., whether or not a Cheetah would catch a Gazelle) under a variety of
conditions. The level of difficulty increased from simple chases in which
the two characters started at the same time to more complex scenarios
in which one character got a head-start in time (anx-axis translation) or
a head-start in distance (ay-axis translation on the position graph only).
When investigating overtake questions, the students were only given infor-
mation about each animal’s velocity and were asked to solve the task by
creating a velocity graph and a linked simulation as shown in Figure 1.

The pivotal aspect of this sequence was that the position graph of each
animal’s motion was never used. We attempted to perturb the students’
thinking about their views of the relation between position and velocity
graphs by asking them to focus on how they could determine a final
position by thinking primarily in terms of the graphical representation of
the relative velocities. In this way, their prior knowledge of computing
integrals algorithmically would not support their efforts to interpret final
position because they were not given any algebraic expressions. We instead
anticipated that they would reorganize their views of velocity graphs as
showing an accumulation of distance based on rate traveled up to the
current moment of time.

Sequence 2. The second investigation involved the use of a motion detector
to graph the position and velocity of a bouncing ball and then to simulate
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Figure 1. Velocity graph (left) and Dots simulation (right) used with Cheetah and Gazelle
activities.

this experience in MathWorlds. We designed this activity to accentuate
the contrast between using the motion detector, which takes the motion
of a ball as input and gives graphical data as theoutput, and the Math-
Worlds software, which essentially inverts this process by taking idealized
graphical data as theinput and giving an animation of a bouncing ball
phenomena as output. As with the first sequence, we intended that a
pedagogical inversion, that is, a reversal of the traditional instructional
approach, would encourage the participants to act in new ways with
familiar mathematical objects and re-think their understanding of the
relationship between rates and accumulations.

Sequence 3. The third shared activity sequence was designed to engage
the participants in their roles as teachers. Each participant was asked to
create a three-lesson sequence that focused on the mathematics of change
and utilized the MathWorlds software. The participants were allowed to
choose the grade level (i.e., middle or high school), the content as long as it
involved a concept within the mathematics of change, and the pedagogical
approach, such as working with an individual student or a small group, or
using a single context or multiple contexts for developing concepts. After
each teaching session, the participants reflected on the lesson and modified
subsequent lessons. The intent of this activity was to have the participants
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reflect on and consequently modify their view of their actions within the
microworld as they shifted from the role of student to the role of teacher.

Data and Analytic Method

The data consisted of copies of the participants’ written work on the
relative motion assignment and the Bouncing Ball assignment; written
reflections on their teaching; and the instructors’ daily teaching journals.
Data analysis involved comparison of the data from the two courses
in three phases. In the first phase, each author identified the most
striking trends in her students’ mathematical and pedagogical thinking by
analyzing all student work and reviewing journal notes from each day’s
instruction. A trend was defined as an observed reorganization in thinking
or an “Aha” insight reported by a majority of students over the course of
an activity sequence. The second phase involved having each instructor
compare, contrast, and elaborate of each of the trends in order to differ-
entiate constructs that could be linked, at least in part, to the students’
participation in the common activities from those that were more likely
specific to the norms and values developed at a particular site. The third
phase of the analysis involved the documentation of the occurrences of the
final list of the trends in the data from each course. Thus, all of the trends
reported in this paper were observed at both sites.

RESULTS

Our primary goal was to identify and understand the sources and types
of change that we observed in participants’ views of pedagogy and their
understandings of the mathematics of change. We found it useful to
categorize the different types of trends the participants reported as they
assumed the dual roles of student and teacher. In Figure 2, Cells I and
IV refer to the more familiar paradigm in which mathematical knowing
is examined from the perspective of participants as students (Cell I), and
pedagogical knowing is examined from the perspective of participants
as teachers (Cell IV). Our hypothesis, however, was that the experiences
and insights listed in Cells II and III also contributed to the participants’
overall changes in their mathematical and pedagogical knowledge. In the
following discussion of our results, we describe our findings in each of
these four analytic categories in more detail.
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Figure 2. Participants’ mathematical and pedagogical insights when acting with the
Mathworlds software.

Mathematical Insights from Participants as Students

In this section, we describe two mathematical insights that our participants
reported after experiencing perturbations in their work as mathematics
students using the MathWorlds software at each of the two sites.

Mathematical insight #1: A velocity graph determines a family of posi-
tion graphs. One insight that all participants from both sites reported was
that any given velocity graph determines a family of position graphs.
The genesis of this insight occurred as follows. First, participants trans-
lated the velocity graph vertically and noted that the linked position graph
moved accordingly. Next, they translated the position curve vertically, but
noted that the linked velocity curve did not change at all. Their efforts to
resolve this perturbation ultimately led them to develop a deeper under-
standing between the underlying quantities represented in velocity and
position graphs. They came to see that in varying the initial starting
point by vertically translating the position graph, they were generating a
family of position graphs but were not changing the speed at which the
animal moved. At this point, many students reported an “Aha” insight
regarding the meaning of the ubiquitous “+C” they had routinely been
adding when computing indefinite integrals in their prior calculus classes.
One participant from Site A wrote:

First I made a velocity graph for the Gazelle, and then transferred this to a position graph.
Then by chance I moved the final position of the Gazelle’s dot [in the simulation] and the
Gazelle’s line on the position graph shifted upward! “Great,” I thought, I messed everything
up, now I’ll have to redo the graphs – that is when it hit me. The velocity graph had not
changed. The velocity graph reflects the rates on the position graph – not the starting point.
With a different starting point (simply shifted all up) all of the velocities remain the same.
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Cool! I guess I knew that, but now I am aware of it and understand the workings behind it.
. . . I did not ever realize (probably because it was never posed to me) that from the velocity
graph you could not draw the position graph, unless you were given the starting point!

This participant described her surprise when she realized that what she
expected would happen, that is, that moving the character in the simula-
tion would mess up the velocity graph, did not occur. She resolved her
perturbation by forming what, to her, was a more viable interpretation of
the velocity graph: “the velocity graph reflects the rates on the position
graph – not the starting point.” This reconsideration of the velocity graph
brought forth another aspect of her previous formal knowledge, namely the
value of they-intercept as a starting point. She also noted that she probably
already was aware of this, but had not fully realized “the workings behind
it.”

Mathematical insight #2: The difference between average and instantan-
eous velocity. The Bouncing Ball activity required the participants to create
a position graph given the velocity graph shown in Figure 3a. Like the first
sequence, we anticipated that this task would be difficult for students with
fragile understandings of calculus who relied on rote methods of integra-
tion and who had not formed an image of position in terms ofaccumulated
distanceaccrued by traveling at a linearly changing rate over time. Our
goal was to challenge the participants’ current mathematical knowledge as
well as their views about the traditional ways the subject often is taught.
As we anticipated, when first attempting this task with paper and pencil,
over half of the participants at Site A attempted to solve the task by relying
on the formula of d = r * t. Thus, these participants created a table of values
with three columns as shown in Figure 3b, and then calculated the position
at any given timex by multiplying the velocity at that point (as indicated
by they-coordinate of the velocity graph at timex) and the value of the
time at that point. One participant described his work by noting, “In order
to obtain the position graph, you must multiply the velocity by the time to
have the desired units of meters. The algorithm looks like this, (m/s) * (s)
= m.” This student’s position vs. time graph is shown in Figure 3c.

When this participant compared the graph he had created on paper with
the position graph that he created in the MathWorld, he was surprised
to see that they did not match. This observation, which he brought up
in class, led to a discussion of two critical mathematical concepts: the
need for the conventional definition of negative velocity and the difference
between average and instantaneous speed. These discussions led the class
to devise a more meaningful interpretation of the Mean Value Theorem
based on a graphical interpretation of rate. The average rate was defined as



CHALLENGING PROSPECTIVE TEACHERS’ VIEWS 125

Figure 3. (a) Assignment asking students to create a graph that shows the ball’s position
at any time given the velocity graph (assumeP(0) = 0). (b) One student’s solution to
assignment. (c) Student’s graph created by plotting time and product oft * v(t).
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the constant rate at which another character would travel in order to cover
the same distance as the bouncing ball during the same given time interval.

Pedagogical Insights from Participants as Students

In this section, we continue to view the participants as students learning
mathematics but now consider the ways in which their pedagogical
thinking was challenged as they worked with the microworld activities.

Pedagogical insight #1: The potential value of conceptual explanations. At
both sites, the focus of most activities included an emphasis on explaining
why a computer-generated graph appeared as it did. At Site A, this was
discussed in terms of a distinction between calculational and conceptual
explanations. Although the instructors had hoped that such a practice
would be helpful, some of the participants had difficulties understanding
the purpose and form that such explanations should take. Several of the
participants questioned the value of this practice whereas others main-
tained that conceptual explanations supported their own efforts to develop
imagery for motion and hence would support their future students’ efforts
to reason conceptually as well. Although the class remained undecided,
they did agree that teaching with technology involves rethinking the format
of activities and what counts as an acceptable explanation and solution
within any given classroom culture.

Pedagogical insight #2: The tradeoffs in having exploration before or
after symbolization. Participants discussed extensively whether mathema-
tical formalisms should be introduced before, during, or after students
have explored the mathematics that the symbols portend to signify (cf.,
Doerr, 1997). Given that all of the participants in the study had already
encountered the formal symbols of calculus, and hence the formalisms of
calculus preceded their explorations in graphically oriented microworld,
one might expect that they would argue for the symbolize-then-explore
approach. Indeed, some of the participants at each site maintained that
this was a desirable pedagogical ordering given that it served as a source
of perturbation and ultimate reorganization for them. On the other hand,
others were eager to shift their pedagogical approach, based in part on their
enthusiasm for their own new-found conceptual insights and on the poten-
tial for learners to meaningfully engage in conceptually oriented activities.
The point here is not that the students should have come to an agreement,
or even that there is one right answer to the question. Instead, the value
of these discussions was that the participants assumed the roles of both
teacher and student as they argued their points. Moreover, they realized
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that they, as prospective teachers, do have choices in how they interact with
their students and that these choices affect students’ views of mathematics
in general.

Mathematical Insights from Participants as Teachers

In this section, we shift from viewing our participants as students of
mathematics to viewing them as teachers who were tutoring and teaching
younger children in one-on-one or small-group settings with the Math-
Worlds software. Given that this activity occurred toward the end of
the semester at both course sites, we expected to see some evidence of
the participants’ increased pedagogical content knowledge based on our
curricular agendas as described earlier.

Across both sites, 38% of the participants chose to focus their lesson on
the relationship between the position and velocity graphs and, in particular,
the concept relating area under the velocity graph accrued at each timex
to the value of the object’s position at timex. This was not surprising,
because the two primary activity sequences in the course (the Cheetah
and Gazelle and the Bouncing Ball activities) focused on aspects of this
concept. As a consequence of their experienced instruction, this may have
appeared to the participants as a natural starting point for their activities
with younger learners. What was more surprising was that the remaining
62% of the participants extended their own learning experiences with
MathWorlds by designing learning activities for students that addressed
other mathematical content (such asy-intercept and slope) in novel ways.

In the following two sections, we describe the mathematical and
pedagogical insights that emerged as the participants transitioned from
their role as students to their role as teachers. First, we present two mathe-
matical insights that emerged from the participants’ design and reflection
processes. Following that, we discuss two pedagogical insights that were
reflected in the participants’ written descriptions of their work with their
students.

Mathematical insight #1: The importance of differentiating between local
and global interpretations of graphs. One of the most widely reported
insights by participants, most notably and explicitly at Site B, was that
their students’ activity in the software environment provided occasions to
gauge whether the students were making local or global interpretations of
the features of a graph. This focus was discussed at Site B after the partici-
pants had read Monk’s (1192) distinction between local interpretations,
which involve attention to specific point-wise features such as points of
intersection or relative extrema, and global interpretations, which involve
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a focus on the behavior of the graph over its entire domain. For example,
one participant reported that his students, who had investigated periodic
graphs, were easily able to interpret the features of both the position and
the velocity graphs as the character in his story walked back and forth
between the garage and the end of the driveway. The participant described
how his student, Jake, interpreted the situation:

When identifying the period of the function, Jake focused on the maximums and minimums
of the position graph. Jake has given meaning to those features as ones that will help
him find the period of the function. After the period was identified on the position graph,
Jake would verify the period on the velocity graph. Jake has identified the maximums and
minimums of the position graph as places where Toni [the character in the story] is at the
end of the driveway or at the garage. When he is identifying the period of functions, he is
immediately drawn to these features even if the initial position is not a relative extrema of
the graph.

Although this participant remained skeptical about Jake’s understanding
of the relationship between the direction the character was moving and
the slope of the position graph, his final report indicated that he felt that
his pupil had developed a good understanding of the relationship between
the relative extrema (a local feature of the graph) and the period of the
function as well as a solid interpretation of these features in terms of the
character’s actual motion. This distinction, which the participant made
on his own, is significant in that it reflected his shift away from a focus
on correct or incorrect answer toward mathematical meaning in terms of
interpretation. It also demonstrated strong pedagogical content knowledge
in that he distinguished between his student’s formal understandings of the
mathematical concepts (such as slope as an interpretation of speed) and his
student’s interpretation of the various critical points on the graph.

Another participant, Romy, explicitly focused her lesson on her
student’s interpretation of across-time or global features of a function.
Romy wanted her students to predict the total distance a character would
travel given a velocity graph and to create a position graph that would
match one character’s motion traveling at two different speeds. To Romy’s
surprise however, one of her students created a graph resembling that
shown in Figure 4, which is a non-standard representation that led Romy
to re-think how graphs may be interpreted in unanticipated ways. Romy
expected her students to use piecewise constant line segments to represent
the character’s changing velocity over time. This interpretation would
have involved a global interpretation of a position graph. In assessing
her student’s work, Romy allowed for the possibility that the student may
have misunderstood the question but she also felt confident that the student
understood the sequential nature of the motion. What is more significant is
that this participant appeared to be flexible enough in her own mathema-
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Figure 4. An unexpected velocity graph generated by Romy’s student.

tical thinking to extend her mathematical interpretation of the graphical
representation by seeing how the student could be reading along only
one dimension of the graph and not making time an explicit part of the
representation. By considering the student’s paper and pencil representa-
tion as an alternative way of knowing, the participant gained insight into
how and why the student might choose an unconventional representation
of sequential, one-dimensional motion.

Mathematical insight #2: The importance of appropriate contexts. All
participants created contexts that they thought would appeal to their
students’ interests, but several reported that this was more difficult than
they had anticipated. For example, one participant from Site A explained
that he began his sequence using the context of plant growth. Later he
realized that this caused a problem when he wanted to include negative
velocity into the same context.

The context of the overtake race, where the one-dimensional motion of
one character overtakes another character given a range of initial starting
conditions and varying velocities, as featured in the Cheetah and Gazelle
sequence, became a powerful metaphor for supporting the participants’
development of short instructional sequences. All but one of the partici-
pants at Site B and approximately half of the participants at Site A used
some variation of a race in teaching their mathematical content.

For example, one participant who designed an activity to focus on
Riemann Sums used the context of an overtake race to feature one dot’s
velocity controlled by a half period of a sine curve. The task for his
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students was to create another velocity graph using piecewise, horizontal
line segments so that the second dot would end up in a tie with the first
dot. This participant drew on the students’ prior knowledge about the area
under the velocity curve as determining position and created a mathe-
matical environment that would allow his students to create a piecewise
approximation for the area under a sine curve. Based on his two students’
work, in which they generated their approximations by positioning the
horizontal line segments at the midpoint of the curve, this participant
refined his activity to include both upper and lower sums for the approxim-
ation. What we find significant is that this refinement occurred as a result of
seeing his students interact with each other and with the learning task that
he designed. For this participant, the mathematical insight that he exper-
ienced emerged as he tried to reconcile the contextual difference for his
students between approximating by positioning segments at the midpoint
of the curve on an interval and by sandwiching the curve between upper
and lower segments.

Pedagogical Insights from Participants as Teachers

Pedagogical insight #1: The value of building on students’ incorrect
explanations. Although some of the participants such as Romy capital-
ized on her student’s errors, other participants from both sites maintained
limited views of what constituted a correct answer from a pedago-
gical point of view. We see this as a stumbling block when it prevents
participants from building on their students’ incorrect but reasonable and
potentially fruitful explanations.

One participant who missed an opportunity to capitalize on her
student’s own mathematical explanations was Ellen, a participant from Site
A who was tutoring a talented high school sophomore who had never seen
a position or velocity graph. To begin Ellen asked him to draw a position
graph in which a clown was traveling at a constant rate of 6 m/s for 3
seconds. The student reasoned that the clown would be at 18 meters after
three seconds. He then plotted the points (3,18) and (0,0) and then drew a
line segment connecting these two points as shown in Figure 5a. Ellen then
asked him to draw a velocity vs. time graph showing the clown’s velocity
at each second. In response, the student drew the graph shown in Figure 5b.
Because this graph did not match Ellen’s expectations of what the student
would draw, namely a velocity graph showing a constant speed of 6 m/s
for 3 seconds, she dismissed it as incorrect.

However, in her written reflection, Ellen realized that her student had
described a graph of rate byseeingvelocity in the ratios of the height
and length of each stair step. She noted that her student explained that
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(a) (b)

Figure 5. (a) Student’s drawing of position graph. (b) Student’s drawing of velocity graph.

if the person was traveling for 6 meters per second, then, after 1 second,
he would be at the point (1,6), which could be calculated as a speed of 6
meters per second. Likewise, after two seconds, he would be at the point
(2,12), which, the student explained, was 12 meters per two seconds, or
6 meters per one second. For him, although they looked the same, graphs
5a and 5b were entirely different, depending on how he interpreted them.
After discussing this with her instructor, Ellen gained insight into the
potential value of building on students’ intuitions rather than assuming
that she could just erase what he was thinking and tell him how to create
the correct velocity graph.

A second example of this tension was evident in one participant’s report
from Site B. Linda described a student’s desire to work with the simulation
to check his conjectures and contrasted that with her drive toward inter-
preting it graphically and then with the formula for area. Even when the
formalism followed the exploration in the lesson plan, Linda maintained
that the formalism was her central goal for the lesson. She essentially saw
the lesson as “failing” (her words) because, in the end, the student did
not move successfully, in her opinion, to the formalism. This report, like
several others, indicated that the participants’ experiences as students and
teachers highlighted the pedagogical dilemma of the relationship between
the explorations of ideas and their expression in the formalism of mathe-
matical symbols as described in the earlier section on pedagogical insights
from participants as students.

Pedagogical insight #2: Influence of hidden supports and constraints of
technology on students’ mathematical activities. As Greeno (1997) and
Cobb (1999) pointed out, the features of any computer software program
profoundly affect the nature of one’s activity with it. One implication of
this claim is that teachers wishing to use technology in their classrooms
need to recognize the supports and constraints of the technology and
to decide how to structure activities so that students act in ways that
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are potentially productive. For example, one technological feature that
may have constrained the types of mathematical activity in which the
students were engaged was indicated in several participants’ descriptions
of their students’ dissonance with discontinuous velocity graphs. Julie,
a participant from Site B, who worked with a group of four 11 year-old
students, reported the following dialogue about the velocity graph shown
in Figure 6.

Figure 6. A discontinuous velocity graph.

A: But that’s impossible. Rumba [a clown in the Mathworlds software]
has to pass through all the velocities between 5 m/s and 4 m/s before
actually reaching 4 m/s.

T: Why do you say that?
B: That means Rumba would have to be an alien!
C: Yea, there has to be some number of seconds when Rumba is slowing

down before reaching the new slower velocity.

Julie interpreted the dialogue as follows:

The limited ability of MathWorlds to replicate real-world situations became apparent to
even the sixth graders with whom I worked. In fact, they saw what perhaps the creators
of MathWorlds failed to see – the physical impossibility of instantaneously going from
walking 5 meters/second to walking 4 meters/second.. . . Hence, in the eyes of these
students, discontinuous velocity graphs seemed as extraterrestrial as discontinuous position
graphs.

Julie’s comment indicates that she understood that the use of discontinuous
velocity graphs was an artifact of the design of the software but saw this as
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a problematic mismatch with the viable explanation the student had created
to explain his experienced reality. For Julie, the designers’ decision was
not consistent with her intended pedagogy. She therefore interpreted the
constraint as presenting a serious pedagogical difficulty in that it pushed
the students to abandon their common sense about realistic situations.

The participants at Site A discussed the differences between the afford-
ances of the MathWorlds software and those of the motion detector. In their
discussion, they noted that because the motion detector did reflect the real-
world, it contained noise that distracted from the mathematical abstraction
of the motion. Their work in MathWorlds following their work with the
motion detector enabled them to differentiate the mathematical abstraction
from the noise and to develop a deeper understanding of the way in which
the limits of real-valued functions serve as a bridge between motion in the
real world and that of mathematical formalisms that model it.

DISCUSSION

The two research questions that we set out to investigate were: (a) How
do participants, acting in the role ofstudent, think about the mathematics
of change when using an exploratory microworld, and (b) How do partici-
pants, acting in the role ofteacher, plan, implement, and reflect on lessons
about the mathematics of change when tutoring their students. In analyzing
our results, we found it useful to coordinate the participants’ experiences in
our classes with the perspectives through which they enacted those exper-
iences. In so doing, we were looking for a way to view our courses from
students’ experiential perspectives, and perhaps gain more insight than just
looking at their pedagogical thinking as prospective teachers (Cell IV) or
their mathematical knowledge as students (Cell I).

Our analysis revealed two critical perspectives that might have been
otherwise missed. First, the participants developed pedagogical insights as
students of mathematics (Cell II), and second, the participants developed
mathematical insights as teachers of mathematics (Cell III). Some of the
participants’ most powerful pedagogical insights emerged as they were
assuming the role of mathematics students. For example, the debates over
the value of conceptual explanations and the benefits of exploring mathe-
matical ideas (with the use of microworlds) before introducing formal-
izations were rich because the participants argued from both perspectives.
Although neither debate was fully resolved, the participants from both sites
came to value their own mathematical insights and appreciate these values
as teachers more deeply than had they just been told of these pedagogical
strategies in a methods class. In other words, we found that the students
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who experienced the struggles from both sides came to develop an appre-
ciation for the value of conceptual explanations and explorations with
technology.

A second finding that confirmed our hypothesis regarding the value of
viewing participants in the dual roles was that some of the participants’
mathematical insights developed as they created, taught, and reflected on
mathematical lessons. For example, many participants realized the impor-
tance and difficulty of choosing a rich context through which one could
explain the mathematics underlying the relationship between velocity
graphs and their associated position graphs. Similarly, several participants
from each site found that they could learn new mathematics by listening to
their students’ interpretations.

The constructivist approach we assumed when planning and analyzing
this project focused on accounting for cognitive changes which were situ-
ated in the context in which the individuals were acting. In following Steffe
and Thompson’s (2000) premise that the source of perturbations is often
the social situation in which the student is acting, we are not claiming that
the microworld alone caused any of these fruitful reorganizations. Instead,
we claim that as the activities were realized in the social setting of each of
two sites, the participants’ efforts to reconcile what they anticipated with
what they found led to fruitful discussions. It was these discussions and the
participants’ consequent reflections and abstractions that we believe led to
changes in their mathematical and pedagogical content knowledge as well.

CONCLUSIONS

We close with two conclusions that relate to our work as teacher educators.
First, as noted above, we found that our use of computer-based activity
sequences served as an effective means for eliciting perturbations among
prospective and practicing teachers. Our results indicate that many of the
participants experienced “Aha” insights because they reorganized their
initial understandings of the mathematical relations between position and
velocity, and, in so doing, gained a deeper understanding of the mathe-
matical formalizations as well. We found that because the activities were
somewhat novel, they placed the participants in a learning situation in
which familiar mathematics seemed unfamiliar but not threatening, thus
evoking a dissonance that needed to be resolved.

A second implication for teacher educators is that our analytic frame-
work enabled us to explicitly position our participants in the dual roles of
student and teacher while simultaneously considering their mathematical
and pedagogical knowledge. The value of this conceptualization can be
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illustrated by considering a discussion that took place near the beginning of
the semester at Site A. When the instructor asked the participants what the
value of a conceptual explanation was, they seemed to almost uniformly
agree that good teaching involved “delivering clear explanations” to their
own students and hence the value of a conceptual explanation was that it
enabled them to explain things more clearly. This view changed over the
course of the semester, such that they came to value conceptual explana-
tions not as tools for preaching but as tools for helping their own students
explain things for themselves. Had this not been an explicit discussion
early on, neither the participants nor the instructor at Site A would have
been aware of the fact that they were talking past each other.

NOTES

1 The analysis reported in this paper was supported in part by the National Science Found-
ation under grant No. REC-9619102. The opinions expressed do not necessarily reflect the
views of the Foundation.
2 The version of MathWorlds software used in our classes was compatible with the Macin-
tosh platform only. A Java version is now available at http://www.simcalc.umassd.edu/.
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